skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Arias, Tatiana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. PremiseMultiple transitions from insect to wind pollination are associated with polyploidy and unisexual flowers inThalictrum(Ranunculaceae), yet the underlying genetics remains unknown. We generated a draft genome ofThalictrum thalictroides, a representative of a clade with ancestral floral traits (diploid, hermaphrodite, and insect pollinated) and a model for functional studies. Floral transcriptomes ofT. thalictroidesand of wind‐pollinated, andromonoeciousT. hernandeziiare presented as a resource to facilitate candidate gene discovery in flowers with different sexual and pollination systems. MethodsA draft genome ofT. thalictroidesand two floral transcriptomes ofT. thalictroidesandT. hernandeziiwere obtained from HiSeq 2000 Illumina sequencing and de novo assembly. ResultsTheT. thalictroidesde novo draft genome assembly consisted of 44,860 contigs (N50 = 12,761 bp, 243 Mbp total length) and contained 84.5% conserved embryophyte single‐copy genes. Floral transcriptomes contained representatives of most eukaryotic core genes, and most of their genes formed orthogroups. DiscussionTo validate the utility of these resources, potential candidate genes were identified for the different floral morphologies using stepwise data set comparisons. Single‐copy gene analysis and simple sequence repeat markers were also generated as a resource for population‐level and phylogenetic studies. 
    more » « less